刷题使我快乐,满脸开心.jpg

  • 来源:力扣(LeetCode)
  • 链接:https://leetcode.cn/problems/lru-cache/
  • 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题目

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:

  • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
  • 函数 getput 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105getput

思路

自己实现一个LRU缓存,其实关键就在于用什么数据结构来做存储了,提示就在这句

函数 getput 必须以 O(1) 的平均时间复杂度运行。

空间换时间不用多数了,肯定得这么干,但关键是想要存取都在O(1),那基本就得是元素之间联系比较松散,可以轻易的插入和删除的链表了。另外为了降低链表查询带来的复杂度,就在加上一个哈希表来存储每个节点的指针,方便快速定位节点

我原本设想的是头尾不使用单独节点,但是实际实现的时候发现不如官方题解的思路简单清晰,所以建议用官解的思路:头尾为额外节点。

代码

type LRUCache struct {
    size int
    capacity int
    cache map[int]*DLinkedNode
    head, tail *DLinkedNode
}

type DLinkedNode struct {
    key, value int
    prev, next *DLinkedNode
}

func initDLinkedNode(key, value int) *DLinkedNode {
    return &DLinkedNode{
        key: key,
        value: value,
    }
}

func Constructor(capacity int) LRUCache {
    l := LRUCache{
        cache: map[int]*DLinkedNode{},
        head: initDLinkedNode(0, 0),
        tail: initDLinkedNode(0, 0),
        capacity: capacity,
    }
    l.head.next = l.tail
    l.tail.prev = l.head
    return l
}

func (this *LRUCache) Get(key int) int {
    if _, ok := this.cache[key]; !ok {
        return -1
    }
    node := this.cache[key]
    this.moveToHead(node)
    return node.value
}

func (this *LRUCache) Put(key int, value int)  {
    if _, ok := this.cache[key]; !ok {
        node := initDLinkedNode(key, value)
        this.cache[key] = node
        this.addToHead(node)
        this.size++
        if this.size > this.capacity {
            removed := this.removeTail()
            delete(this.cache, removed.key)
            this.size--
        }
    } else {
        node := this.cache[key]
        node.value = value
        this.moveToHead(node)
    }
}

func (this *LRUCache) addToHead(node *DLinkedNode) {
    node.prev = this.head
    node.next = this.head.next
    this.head.next.prev = node
    this.head.next = node
}

func (this *LRUCache) removeNode(node *DLinkedNode) {
    node.prev.next = node.next
    node.next.prev = node.prev
}

func (this *LRUCache) moveToHead(node *DLinkedNode) {
    this.removeNode(node)
    this.addToHead(node)
}

func (this *LRUCache) removeTail() *DLinkedNode {
    node := this.tail.prev
    this.removeNode(node)
    return node
}