当缓存被击穿,DB不被压垮的一个解法
简介
这一切都源于一个大接口的优化,当并发升高,很多缓存有可能同时失效时,如何防止DB被打挂,尽可能的保护?重复的请求,重复的资源,如果节约成本?
这一切,有一个解法 -- singleflight
结构体
// call is an in-flight or completed singleflight.Do call
// call 表示一个正在执行的或已完成的函数调用,存储调用的接口、报错一些标记等等,
type call struct {
// 可以看到,singleflight实现中用到了WaitGroup
wg sync.WaitGroup
// These fields are written once before the WaitGroup is done
// and are only read after the WaitGroup is done.
// 记录结果,在WaitGroup完成之前,只会写入一次,重点在此了
val interface{}
err error
// forgotten indicates whether Forget was called with this call's key
// while the call was still in flight.
// 用来标识执行完成之后结果立马删除还是保留在singleflight中
forgotten bool
// These fields are read and written with the singleflight
// mutex held before the WaitGroup is done, and are read but
// not written after the WaitGroup is done.
// 这个字段记录执行次数,更新时机是发起请求,waitGroup执行完成‘之前’
dups int
// 用来记录DoChan中需要返回的数据
chans []chan<- Result
}
// Group represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
// 用来记录已经存在的对某key的请求和对应的实际请求函数(call)的映射
type Group struct {
mu sync.Mutex // protects m 加锁保护m
m map[string]*call // lazily initialized 懒加载
}
// Result holds the results of Do, so they can be passed
// on a channel.
// 记录结果,结果值Val,结果报错Err,结果是实际请求还是分享的返回
type Result struct {
Val interface{}
Err error
Shared bool
}
方法
Do
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
// Do执行并返回给定函数的结果,确保在给定时间仅对给定键进行一次执行。
// 如果出现重复,则重复的调用者将等待原始请求接收到相同的结果。
// 共享的返回值指示是否将v分配给多个调用者。
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
// 加锁,主要防止请求重复记录,并非加锁去做请求
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
// 校验是否已经完成请求,有则直接返回,shared肯定为true
if c, ok := g.m[key]; ok {
c.dups++
g.mu.Unlock()
c.wg.Wait()
return c.val, c.err, true
}
// 校验是新的请求,waitGroup加1,存储,解锁
// 注意,只有真正发起请求时候,才会执行waitGroup加1
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
// 实际去请求,返回结果,此时
g.doCall(c, key, fn)
// 此时dups应该是恒定为0的?没想明白为什么需要判断,手动执行过Forget时?
return c.val, c.err, c.dups > 0
}
DoChan
// DoChan is like Do but returns a channel that will receive the
// results when they are ready.
// 整体上与Do函数很类似,只是返回结果变为了chan
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
ch := make(chan Result, 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
c.chans = append(c.chans, ch)
g.mu.Unlock()
return ch
}
c := &call{chans: []chan<- Result{ch}}
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
go g.doCall(c, key, fn)
return ch
}
doCall
// doCall handles the single call for a key.
// 实际执行函数
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
c.val, c.err = fn()
c.wg.Done()
// 请求完结果,置好waitGroup状态 Done,加锁开始处理后续逻辑
g.mu.Lock()
// 默认forgotten为false,会去删除请求好的状态,所以单飞只控制了同一时间相同请求
if !c.forgotten {
delete(g.m, key)
}
// 将chans中的结果发出去
for _, ch := range c.chans {
ch <- Result{c.val, c.err, c.dups > 0}
}
g.mu.Unlock()
}
Forget
// Forget tells the singleflight to forget about a key. Future calls
// to Do for this key will call the function rather than waiting for
// an earlier call to complete.
func (g *Group) Forget(key string) {
g.mu.Lock()
// 防止重复删除
if c, ok := g.m[key]; ok {
c.forgotten = true
}
// 删除后,同样的请求,会同时去真实的发起请求
delete(g.m, key)
g.mu.Unlock()
}
总结
并发是一个双刃剑,节约了时间,但是也带来了很多的问题,不断学习,不断进步,自己要学习的还有很多,共勉!💪💪
希望能用好并发这个工具,解决更多的问题。
引用
深入理解singleflight
源码分析-singleflight
singleflight源码注释
曹大golang笔记 - sync包
singleflight 防缓存击穿 使用及原理